If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12b^2-14b-10=0
a = 12; b = -14; c = -10;
Δ = b2-4ac
Δ = -142-4·12·(-10)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-26}{2*12}=\frac{-12}{24} =-1/2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+26}{2*12}=\frac{40}{24} =1+2/3 $
| 9x-17+89=180 | | 9z+17=72 | | 8n-6=-2 | | 23+7y=2 | | 6x+23=x | | 3m+4=1.2 | | 8w+1=-15 | | -3b-43=-28 | | p+0.5p+40=580 | | v+7=56 | | v-14=90 | | 2^x=1.414 | | x/3.5=1.25 | | -4p-39=-7 | | 10.8=x-6.75 | | n^2-11n+94=0 | | 10n^2+15n-4=0 | | 42(x+11)=(3x+1)30 | | (0.19x+66)+(0.06x+46)=180 | | 6x-30=-36 | | 2p-6p=12p | | X+3x+5x+27=360 | | 2x-5)+62=180 | | 3(2^2x-1)=96 | | 43(3x-23)=43 | | K+12=20.k=15 | | i=64-7i | | -10+4d=2 | | x3+2x2-4x+1=0 | | 32+7x-4=3x | | -c/3=6 | | -s-5=-10 |